
Solass

Issue 5 May 2004 Page 1 of 5

Harnessing the power of XML to Achieve a Successful
Data Migration

Tony Holtham

Within any reasonable sized organisation, an established enterprise application will manage
such a complexity of data and relationships between the data, that when a new application is
deemed necessary, most businesses have little confidence that data migration will be a total
success. This paper examines how XML can be used to deliver a new approach that increases
the success of complex data migration projects and allows the old system to be retired sooner.

The complexity of data migration means that a big-bang approach to data migration is not usually
seriously considered. This forces a project-by-project approach to be adopted which results in the
existing system being active for a considerable amount of time. Even when the migration is deemed
as complete, the system is often kept alive and maintained 'just in case' some of the data was omitted
or mishandled. To address these issues, we must move away from the usual proprietary approach to
data migration and look to applying proven technology in a number of discrete and manageable steps.

Manageable Steps
The first step is to make sure that all data held in the source system is captured into a neutral, non-
propriety format. Over the past decade XML has emerged as an ideal format for ensuring longevity of
access to data coupled with the ability to use a range of commercial tools.

With all the data stored in a neutral format, the subsequent steps can then be defined in complete
confidence that all the data is captured and ready for migration. Should any of this data not be
migrated to the new system, it will always be available for future use, without requiring access to the
source application.

What Is XML?
XML is the (eXtensible Markup Language). XML is a documented standard defined by the World Wide
Web Consortium (W3C) and is now in wide use across many industries for facilitating the interchange
of data between computer applications. XML is actually a meta-language that allows the creation of a
standardised set of rules for adding structure to any form of data using a system of markup tags
(elements). Any organisation can create their own markup vocabulary (called an XML Schema or XML
Document Type Definition - DTD), and XML ensures that the structure will be intelligible to anyone
else who consults the XML Schema/DTD document. More importantly, by referring to an XML
Schema/DTD, any software that is XML-aware is able to automatically manipulate the data without
needing advance knowledge of the structure.

XML is extensively used to meet the requirements of organisations for industry-specific markup,
vendor-neutral data exchange, media-independent publishing, one-on-one marketing, workflow
management in collaborative authoring environments, and the processing of documents by intelligent
clients. XML is fully internationalised for both European and Asian languages, with all conforming
processors required to support the Unicode character set in both its UTF-8 and UTF-16 encodings.
The language is designed for the quickest possible client-side processing consistent with its primary
purpose as an electronic publishing and data interchange format.

XML instances are made up of storage units called entities, which contain either parsed or unparsed
data. Unparsed data consists of images, audio, video etc whilst parsed data is made up of characters,
some of which form the character data in the document, and some of which form markup. Markup
encodes a description of the document's storage layout and logical structure. XML provides a
mechanism to impose constraints on that storage layout and structure. The very nature of XML is that
it is a structured document format, in that it represents not only the information to be exchanged, but
the metadata encapsulating its meaning and the structure of the information to be exchanged.

Solass

Issue 5 May 2004 Page 2 of 5

Why Use XML for Data Migration?
Separates formatting and processing from data
XML represents both information and the metadata about that information. It does not specify any
particular manner for how the data should be processed or provide any constraints for mechanisms
with which to handle the information. XML documents simply encode information and their metadata
without specifying how the information is to be processed or displayed. This singular feature is a
tremendous benefit for those looking for a cross-platform and cross-device language that is meant for
simply encoding data and its structure.

This capability of XML to separate process and data content results in what is often termed as “future-
proof” or “loosely coupled”. Future proofing means that no future changes in the data exchange layer
should affect the programming layer, and vice-versa. Loosely coupled systems allow for “arms-length”
exchange of information where one party does not need to know details of how the other party plans
to process the information. This allows for changes in any of the presentation, process, or data layers
without affecting the other layers.

XML instances can be validated
XML instances can be validated for correctness and come with error and validity checking built-in. The
DTD or schema that is referred to by an XML document can guarantee, at time of document creation,
that all the elements are correctly specified, in the correct order. Instances can be validated at time of
creation or at time of receipt and be rejected or accepted on an automated basis without human
intervention. At design-time, errors can be fixed before transmission, and on receipt, errors can be
sent back to the sender for further human processing, with an exact pinpoint as to where the error has
occurred.

Validity checking also comes at a very low cost, if not free, since most parsers on the market are
available as open source and come with validation built-in.

Data can be viewed with simple tools, such as browsers
XML can be visualised using a number of low cost tools or methods:

• Internet browsers - native viewing of XML or by using XSL or CSS to render on the browser

• Conversion of XML to HTML – performed at server-side, run-time or in batch using XSL or
other methods

• Use of specialised Java applications - to render XML in a browser

Whilst it is possible to use freely available browsers to visualise XML, more important are the business
applications that understand XML and can interpret the documents in a manner that is relevant to the
context in which they were produced. After all, if a business user is entering a purchase order in a
system, they will be unable to debug an XML document if the other party rejects it. Instead, the tool
used to create the document will have to interpret the results and present them back to the user in a
consumable manner. Although such functionality is rare within the current generation of applications, it
is starting to emerge in new applications and will continue to increase as XML becomes ever more
pervasive.

License-free, platform-neutral, software independent, and widely supported
XML is a technology that has no single owner or point of commercial licensing. As such, it can be
freely implemented in any application or usage scenario that an organisation sees fit, without incurring
licensing costs. Due to the separation of process from content, it is also a good example of a platform-
neutral data format.

In addition, XML is widely supported by all manner of individuals and organisations. As a truly open-
source and open-process technology, XML provides implementers a wide base of resources that can
provide assistance. Rather than being constricted to getting technical support and assistance from a
single company, XML provides implementers the opportunity to obtain an XML-based product from

Solass

Issue 5 May 2004 Page 3 of 5

one company, implementation services from a second company, and support and ongoing
maintenance from yet another company. This is the essence of the open-source movement.

The processing technology is widespread and easily available
Since XML is a structured document that shares many of the processing and parsing requirements of
SGML and HTML, there are plenty of available parsers. Many of these parsers are now an integral
part of generally available browsers and server-side agents

However, while XML processing tools are becoming inexpensive and ubiquitous, the implementation
of these tools is not a free or painless process. Processing XML documents does not stop at simply
parsing an XML file. The data from those documents needs to be acted upon. For most applications,
parsing an XML document is just the first step of many. However, standard tools at least remove from
programmers the worry of parsing the document.

Flexible
Extensibility is the ability to define specific vocabularies and metadata. Rather than being fixed in
describing a particular set of data, XML in conjunction with its DTDs and Schema is able to define any
of a number of documents that together form a language of its own.

Adding additional elements and attributes can easily extend XML instances. While XML is fairly simple
in nature (it only needs to follow basic syntax rules to be considered “well-formed”), one of the biggest
features of the language is its ability to provide a means for guaranteeing the validity of a document.

Human readable
Humans can easily read XML, and well-designed XML should be developed with readability in mind.
Human readability not only makes debugging and diagnosis easier, but actually speeds up
implementation time. With data not locked in a proprietary or binary data format, developers can easily
check to see that their processes are producing the correct results.

Easily internationalised
One of the drawbacks to many other formats is that they don’t easily support the needs for
internationalisation and localisation. Currently, in other languages, it is difficult to represent information
contained in a Unicode alphabet. XML, as part of its initial specification, inherently supports these
needs. XML syntax allows for international characters that follow the Unicode standard to be included
as content in any XML element. These can then be marked up and included in any XML-based
exchange.

While XML gives the freedom to use any Unicode character within the text of an XML document (as
content for elements), it strictly limits the characters that can be used as names for XML elements.

Using an XML Repository for Data Migration
The repository contains all the source system data, and by using XML the structure of the data is also
preserved. As such, at any time in the future, the data owners will be able to use the repository to
supply any incomplete or missing information. The repository therefore provides the longevity to the
source data that the business requires. By storing it in a neutral format continued ease of access to it
via standard industry browsers is provided.

The repository also provides the platform and source data for the ongoing migration to the target
application, facilitating any data cleansing requirements prior to loading the data. This then provides a
highly efficient mechanism to enable the population of the target application with the correct data and
within a timeframe which the business allows.

Solass

Issue 5 May 2004 Page 4 of 5

Key Benefits
Use of native application tools to reduce cost and risk
The use of native application tools to export and import data to and from the XML repository improves
data quality and reduces risk and costs.

Data cleansing
Data Cleansing is supported by combining the source system and target system Schemas with an
industry-standard XML schema checker to check the validity and integrity of the XML objects prior to
loading them into the target system.

Data cleansing can take a number of forms, such as:

• Renaming of objects

• Modification of the unique identifiers of the objects to conform to another format

• Removal of objects that are not referenced by any other objects

• Insertion of default values into fields within the object

• Modification of the data held within each object to facilitate its conversion to the target format

This data cleansing is facilitated by the fact that the object is in XML. Being highly structured, it is easy
to obtain the contents of an element for further processing.

Supports big-bang and incremental data loads
The data is extracted from the source system and stored in the repository as business objects.
Therefore, either all or a subset of the objects can be processed at any point in time. The data load
framework could subsequently track the Business Objects that have been loaded into target system,
hence supporting both incremental and big bang data migration.

Repository
• Standards Compliant
• Open
• Non-proprietary

Source Enterprise
Application

Target Enterprise
Application

Favourite
Browser

<?xml…..
<source>
<recinfo>
…
…

<?xml…..
<target>
<recinfo>
…
…
 Human

Readable

Data
Cleansing and
Manipulation

Solass

Issue 5 May 2004 Page 5 of 5

Source system data archived in standards-based neutral format
Existing users will be able to access their source system data even when the source system has been
retired. Therefore, the business can accept the new system even though some of the source system
data has not been migrated to the target system, hence speeding up the analysis and test phases.

Reduced time to perform big-bang data migrations
A full data migration process requires:

o Object export from Source system

o XML manipulation

o Object import into Target

The use of the repository as part of the above process reduces the elapsed time needed to complete a
big-bang data migration.

Avoid repetitive source system exports
Data loads often require multiple passes of the data to address the rules embedded in the applications
within the target system. Using the repository removes the need to perform multiple repetitive object
exports.

Additional incremental loads do not need the source system
Once the main data load has been completed, additional data can be loaded. An incremental load can
be performed without the need to access the source system application. This allows the source
system to be retired, while access to the data is maintained, in readiness for the target application to
match the functional requirements of the business.

Secure intellectual capital
Any organisation will be rightly concerned about turning off the source system and losing the
intellectual capital stored within it. The repository, combined with the application rules, ensures that
the intellectual capital of the organisation is secured. All object data contained within source system
will be available as part of the XML version of the object. This means that any reports generated by
the source system could be replicated from information contained within the repository, unless such
reports rely on data external to the original source system objects.

Using XML leads to a successful data migration
Using XML provides a fresh project approach that significantly reduces the risk, cost and elapsed
deployment time of data migration. XML also delivers a number of other key benefits over and above
the traditional ‘point to point’ migration. By utilising technologies that will provide ongoing benefit to the
organisation after the migration activity has been completed, the necessary cost of data migration is
turned into an investment for the future.

Tony Holtham is an independent Consultant and a member of the Solass Associates Program. He
can be contacted through Solass on +44 870 744 8765 or by email to tony.holtham@solass.com

